2007 г.

Принципы организации IP-телефонии на базе решений Cisco Systems

Иван Ярцев
Информационный бюллетень JET INFO

Назад Оглавление Вперёд

Передача голоса через IP-сеть

Инкапсуляция голосовых данных и расчет пропускной способности канала

Голос для передачи по сети сначала попадает на вход цифрового сигнального процессора DSP (Digital Signal Processor), где он порциями кодируется определенным кодеком. Выход с DSP инкапсулируется в PDU (единица данных протокола — фреймы, пакеты) и передается по сети.

При доставке данных реального времени, таких как голос, метод определения PDU, несущих голос, является необходимым. Если обнаруживается такой PDU, можно применить механизмы ускорения его передачи.

Технология VoFR (Voice over Frame Relay — передача голоса по каналам Frame Relay) использует специальный заголовок FRF.11 (Рис. 1). Этот заголовок занимает, как минимумМинимум— это наименьшее возможное количество чего-либо в данном контексте., три байта и служит для определения типа данных, которые содержатся во фрейме. Устройства VoATM (Voice over ATM — передача голоса по каналам ATM) используют такой же заголовок.

Рис. 1. Поля, отвечающие за пометку приоритета

Пропускная способность канала, занимаемого одним голосовым звонком, зависит от следующих компонентов:

  • используемый кодек;
  • размер полезной нагрузки в пакете;
  • размер служебной информации в пакете.

Различные кодекиКодек (англ.codec, от coder/decoder— шифратор/дешифратор— кодировщик/декодировщик или compressor/decompressor)— устройство или программа, способная выполнять преобразование данных или сигнала. (сокращение от "кодер-декодер" — компонент системы, обеспечивающий сжатие и распаковку определенных данных) требуют разную полосу пропускания:

Кодек

Технология сжатия

Битрейт кодека (Кб/с)

G.711

PCM

64

G.726

ADPCM

16, 24, 32

G.728

LDCELP

16

G.729

CS-ACELP

8

G.729A

CS-ACELP

8

Занимаемую полосу пропускания можно вычислить, основываясь на битрейте (число битов потока, передаваемых за секунду; основная характеристика видео- или аудиопотока при сжатии) кодека, издержке пакетизации и размере полезной нагрузки в пакете.

Размер полезной нагрузки зависит от размера голосового сэмпла (звукового файла), который является величиной конфигурируемой и непосредственно влияет на требуемую полосу пропускания. Голосовой сэмпл — это выход с процессора DSP, инкапсулирующийся в PDU. Cisco использует DSP, обрабатывающие по 10 мс голоса. Оборудование Cisco по умолчанию инкапсулирует в PDU 20 мс голоса вне зависимости от используемого кодека. Это значениеЗначение— ассоциативная связь между знаком и предметом обозначения. можно изменить, но при его увеличении требуемая полоса пропускания уменьшается, что может привести к увеличению переменных задержек (так называемых джиттеров — jitter) и появлению ощутимых разрывов в звучании, если пакет не дойдет до пункта назначения.

Размер сэмпла в байтах рассчитывается по формуле:

где

  • Bytes_per_sample — размер сэмпла в байтах,
  • Sample_size — размер сэмпла в секундах,
  • Codec_bandwidth — битрейт используемого кодека.

Для вычисленияВычисление — математическое преобразование, позволяющее преобразовывать входящий поток информации в выходной, с отличной от первого структурой. Если смотреть с точки зрения теории информации, вычисление - это получение из входных данных нового знания. полосы пропускания канала, занимаемой одним звонком, используется следующая формула:

Total_bandwidth=(Layer2_overhead+IP_UDP_overhead+Sample_size) / Sample_size*Codec_speed,

где

  • Layer2_overhead — объем служебной информации протокола канального уровня в байтах,
  • IP_UDP_RTP_overhead — размер заголовков протоколов IP, UDP и RTP в байтах,
  • Sample_size — размер сэмпла в байтах,
  • Codec_speed — битрейт используемого кодека.

Приведем примерПример рассматривается в риторике чаще всего в контексте доказательств и аргументов. Для Квинтилиана пример является одним из дополняющих, наглядных доводов к высказыванию, либо упоминанием полезного, настоящего или якобы существующего образца убеждения того, что определено тобой одним. Правда, в отличие от доказательств, связь с предметом обсуждения должна быть установлена прежде автором или оратором.ы полосы пропускания, занимаемой одним звонком, при использовании кодеков G.711 и G.729 и различных размерах сэмплов. В качестве протоколов канального уровня возьмем Frame Relay и Ethernet II.

Размер служебной информации при использовании Ethernet II составляет 18 байт (6 байт — адрес назначения, 6 байт — адрес источника, 2 байта — тип, 4 — контрольная сумма); при использовании Frame Relay — 6 байт (2 байта — DLCI, 2 — FRF.12, 2 — контрольная сумма). Заголовки IP, UDP и RTP без компрессии занимают 40 байт (20 IP, 8 UDP, 12 RTP). Таким образом получаем распределение, представленное в Таб. 1.

Проблемы использования сети передачи данных для передачи голоса

В традиционной телефонии голос имеет гарантированную фиксированную задержку при передаче и гарантированную полосу пропускания для каждого звонка. В сети передачи данных для передачи голоса требуется низкая задержка, минимальные джиттеры и потери пакетов.

Проблемы качества передачи голоса включают:

  1. Потери пакетов. Голосовые кодеки способны восполнять небольшие потери, но если они выше некоторого предела, то возможно прерываниеПрерывание (англ.interrupt)— сигнал, сообщающий процессору о наступлении какого-либо события. При этом выполнение текущей последовательности команд приостанавливается и управление передаётся обработчику прерывания, который реагирует на событие и обслуживает его, после чего возвращает управление в прерванный код. голоса.
  2. Задержка. Сквозная задержка — это время, которое требуется для передачи пакета от передающего на принимающее устройство. Задержка складывается из постоянной и переменной составляющих. Постоянная составляющая может быть оценена при проектировании сети. Примеры постоянных задержек — время прохождения сигнала по сети, задержка кодирования, время пакетизации. Перегруженные очереди на интерфейсах и время выкладывания данных на физическую среду передачи данных (Serialization delay) рождают переменныеПеременная— атрибут физической или абстрактной системы, который может изменять своё значение. Значение может меняться в зависимости от контекста, в котором рассматривается система, или в случае уточнения, о какой конкретно системе идёт речь. Концепция переменной широко используется в таких областях как математика, естественные науки, техника и программирование. Примерами переменных могут служить температура воздуха, параметр функции и многое другое. В широком смысле, переменная характеризуется лишь множеством значений, которые она может принимать. задержки. Время выкладывания данных на физическую среду является функцией от скорости канала и размера пакета — чем больше пакет и меньше скоростьСкорость (часто обозначается \vec v, от англ.velocity или фр.vitesse)— векторная физическая величина, характеризующая быстроту перемещения и направление движения материальной точки в пространстве относительно выбранной системы отсчёта (например угловая скорость). Этим же словом может называться скалярная величина, точнее модуль производной радиус-вектора. канала, тем больше это время. Несмотря на то что это отношение известно, время выкладывания данных на физическую среду отнесено к переменным задержкам, потому что больший пакет может войти в очередь на интерфейсе в любой момент перед голосовым пакетом. В этом случае голосовой пакет будет ждать в очереди на интерфейсе, пока не будет обработан пакет перед ним.
  3. Различие времени задержек передачи от пакета к пакету (джиттер) — разница между ожидаемым и фактическим временем прихода очередного пакета. VoIP-устройства используют специальный буфер для установления постоянного темпа обработки пакетов, таким образом достигается плавность звучания голоса.

Технологии магистрали

Для обеспечения передачи различных типов трафика в магистральных каналах связи используются различные технологии:

  • классификация и маркировка трафика;
  • механизмы очередей или устранения перегрузок на интерфейсах;
  • механизм сжатия заголовков RTP-пакетов;
  • фрагментацияФрагментация — процесс дробления чего-либо на множество мелких разрозненных фрагментов. В основном используется как компьютерный термин. пакетов.

Все эти технологии должны обеспечить различным видам трафика соответствующий уровень обслуживания и необходимое качество голосовых соединений.

Механизмы обеспечения качества передачи голосовых данных

Приложения реального времени, такие как голосовые, отличаются своими характеристиками от традиционных приложений. Голосовые приложения допускают минимальный джиттер. Потери пакетов и джиттеры ухудшают качество передаваемого голоса. При замене традиционных голосовых технологий IP-телефонией пользователи должны получать то же качество голоса, как и при обычной телефонии. Для эффективной передачи голоса через IP-сеть нужен механизмМеханизм (греч. mechan— машина)— это совокупность совершающих требуемые движения тел (обычно— деталей машин), подвижно связанных и соприкасающихся между собой. Механизмы служат для передачи и преобразования движения. надежной доставки с маленькой задержкой.

VoIP гарантирует передачу голоса высокого качества только в том случае, если аудио- и сигнальные пакеты имеют приоритет перед любыми другими пакетами в сети. Для выполнения этого требования используется механизм QoS (Quality of Service). QoS — это методикаМетодика в образовании — описание конкретных приёмов, способов, техник педагогической деятельности в отдельных образовательных процессах; «собирание правил воспитательной деятельности». обеспечения качества передачи определенных данных, основанная на разделении трафика по приоритетам для соответствующей его обработки. QoS обеспечивает лучший, более предсказуемый, сервис сети, выполняя следующие функции:

  • поддержка выделенной полосы пропускания;
  • уменьшение потерь пакетов;
  • предотвращение заторов в сети, управление загруженностью сети;
  • управление сетевым трафиком;
  • установление приоритетов для различных типов трафика в сети.

Программное обеспечение Cisco IOS (операционнаяОперационный блок— отделение медицинского учреждения (операционного отделения), в котором проводятся оперативные вмешательства. системаСистема (от др.-греч. — «сочетание»)— множество взаимосвязанных элементов, обособленное от среды и взаимодействующее с ней, как целое. активного сетевого оборудования фирмы Cisco Systems) включает в себя полный набор средств обеспечения QoS в сети. Перечислим некоторые из них.

  • На выходных очередях маршрутизаторов применяются следующие методы ускорения обработки критичного трафика:

    • WFQ (Weighted Fair Queuing) и DWFQ (Distributed WFQ). Разделяет трафик на потоки, после чего распределяет его на вывод особым образом, обеспечивая поддержку заданной полосы пропускания и заданный диапазон задержек.
    • CBWFQ (Class-Based Weighted Fair Queuing). Расширяет функциональность WFQ, предоставляя поддержку пользовательских классов трафика. Можно самостоятельно задать специальный класс трафика для голоса, используя CBWFQ.
    • LLQ (Low Latency Queuing). Предоставляет строго приоритетную постановку в очередь на виртуальных соединениях ATM (VCs) и последовательных интерфейсах.
    • WRED и DWRED (Weighted Random Early Detection и Distributed WRED). Обеспечивает разные параметры производительности для различных классов трафика. Такая классификация гарантирует привилегированную обработку голосового трафика в условиях затора без усугубления ситуации.
  • В глобальной вычислительной сети и протоколах ГВС для улучшения качества обслуживания различных видов трафика применяются:
    • CAR (Committed access rate). Обеспечивает ограничение занимаемой полосы пропускания.

      FRTS (Frame Relay traffic shaping). Задерживает "чрезмерный" трафик, используя специальный буфер или механизм очереди для удержания пакетов и нормализации потока данных в случае, когда его объем выше ожидаемого.

      FRF.12. Обеспечивает лучшую пропускную способность на низкоскоростных линиях Frame Relay.

      IP to ATM class of service (CoS). Включает в себя обеспечение соответствия характеристик CoS между IP и ATM.

      MLP (Multilink PPP) с LFI (link fragmentation and interleaving). Фрагментирует большие пакеты. LFI также обеспечивает специальную очередь для передачи небольших, чувствительных к задержкам пакетов, позволяя им быть отосланными раньше других.

      CRTP (Compressed Real-Time Transport Protocol). Сжимает заголовки RTP, уменьшая расход полосы пропускания для голосового трафика.

      RSVP (Resource Reservation Protocol). Поддерживает резервированиеРезервирование является универсальным принципом обеспечения надёжности, широко применяемым в природе, технике и технологии, впоследствии распространившемся и на другие стороны человеческой жизни. ресурсов в IP-сети.

      Распространение политик QoS по протоколу BGP (Border Gateway Protocol). Обеспечивает распространение политикПолитик, политический деятель— лицо, профессионально занимающееся политической деятельностью. Политическая деятельность может осуществляться в органах исполнительной (президент, премьер-министр, член кабинета министров) и законодательной власти (депутаты парламентов различных уровней, городских советов и др.), а также в качестве функционеров политических партий. QoS на удаленные маршрутизаторыМаршрутизатор (проф. жарг. раутер, рутер (от англ.router /u:t()/ или /at/, /at/) или роутер (прочтение слова англ.router как транслитерированного))— сетевое устройство, пересылающее пакеты данных между различными сегментами сети и принимающее решения на основании информации о топологии сети и определённых правил, заданных администратором. в сети по протоколу BGP.

Классификация и маркировка трафика

Классификация позволяет выделить из трафика определенный поток и затем применить к нему политики и действия различного характера. Классификация используется для маркировки, приоритизации, буферизации и т.д.

Для определения принадлежности трафика к тому или иному классу, что необходимо для принятия решения о способе его обработки, могут проверяться различные характеристики:

  • физический интерфейс, порт;
  • поля из заголовка фрейма 2-го уровня — MAC-адрес, биты поля CoS 802.1Q/P, VLAN id;
  • поля из IP-заголовка — IP Precedence, код DSCP, IP-адреса источника и/или назначения;
  • порты протоколов TCP и UDP;
  • сигнатуры из уровня приложений.

Классификация применяется для входящего и/или исходящего из маршрутизатора трафика.

Для маркирования пакета может быть использован заголовок второго уровня (802.1Q/p, FR DE bits) и/или поле TOS IP-заголовка (IP Precedence или DSCP).

Маркированный трафик упрощает применение единых правил приоритизации/обработки трафика для всех устройств в сети передачи данных, в том числе и для устройств провайдера услуг.

Маркировка трафика и перемаркировка рекомендована на входящем интерфейсе, как можно ближе к источнику трафика.

Механизмы очередей или устранения перегрузок на интерфейсах

Для регулирования возможных перегрузок на исходящем интерфейсе в ПО маршрутизатора (IOS) существует уровневая система буферизации пакетов. Подсистема L3 оперирует IP-пакетами, L2-буфер сильно зависит от канального протокола и L1-буфер (Tx Ring) работает на драйвере устройства.

Существует несколько алгоритмов регулировки очередей для подсистемы L3.

При наличии в сети VoIP-трафика компанией Cisco рекомендовано использовать LLQ (Low-Latency Queuing). Алгоритм основан на классификации потоков:

  • поддерживает очередь с безусловным приоритетом strict priority для голосового трафика и CBWFQ для трафика других приложений. Маршрутизатор обрабатывает только очередь strict priority, пока она не будет полностью обработана. Если очередь strict priority пуста, то весь остальной трафик обрабатывается по методике CBWFQ;
  • уменьшает возможные задержки голосовых пакетов и оптимизирует использование полосы пропускания канала.
Механизм сжатия заголовков RTP пакетов (cRTP)

На маршрутизаторах можно задействовать механизм сжатия заголовков RTP пакетов. В этом случае, вместо того чтобы передавать друг другу RTP-пакеты с заголовком в 40 байт (IP+UDP+RTP), они передают пакеты с заголовком в 2-5 байт. Передающий маршрутизатор заменяет исходный заголовок, а принимающий при приеме его восстанавливает.

Механизм не влияет на задержку VoIP-трафика. Уменьшает полосу канала, занимаемую голосовым трафиком.

Механизм cRTP имеет следующие характеристики:

  • используется только на соединениях point-to-point и не применяется при передаче пакетов через Ethernet и MPLS.
  • Механизм относится к процессам, работающим на канальном уровне (L2), то есть принимает пакеты после их обработки процессами третьего уровня.
  • Изменяет заголовок исходящего пакета. При приеме пакета заголовок должен быть декомпрессирован для его дальнейшей маршрутизации.
  • Уменьшает полосу, занимаемую голосовым трафиком, что необходимо учитывать при планировании политик очередей LLQ.
  • Механизм создает дополнительную нагрузку на CPU маршрутизатора. Не рекомендуется использовать при загрузке CPU более 70%.
  • Механизм зависим от протокола канального уровня. Работает только на каналах с инкапсуляцией типа HDLC, Frame Relay или PPP.
  • Возможно«Возможно» (фр.Peut-tre)— фильм режиссёра Седрика Клапиша 1999 года. использование классификатора трафика (class based RTP) для применения механизма сжатия только к VoIP-пакетам, что уменьшает нагрузку на CPU маршрутизатора, так как применение механизма cRTP на интерфейсе автоматически включает сжатие TCP-заголовков для всех исходящих пакетов.
  • Механизм идентифицирует RTP-поток по UDP-портам.
Фрагментация пакетов (LFI)

Механизм поддерживает выполнение рекомендацииРекомендации (лат.recommendatio— совет)— в международном праве означают резолюции международных организаций, совещаний или конференций, которые не имеют обязательной юридической силы. Рекомендации не являются источниками международного права, однако они активно способствуют формированию новых норм и принципов международного права. В исключительных случаях рекомендации могут быть признаны юридически обязательными (например, рекомендации Гене­ральной Ассамблеи ООН в адрес ЭКОСОС, согласно ст.66 Устава ООН, имеют характер обязательных указаний). Для того чтобы рекомендация была признана обязательной для государства, необходимо волеизъявление такого государства. В виде рекомендаций часто принимаются Резолюции Генеральной Ассамблеи ООН и международных организаций системы ООН. Важными, по своему содержанию, являются рекомендации Совета Безопасности ООН относительно разрешения спора между государствами мирными средствами. Рекомендации также могут приниматься региональными международными организациями. ITU G.114 — устройство не должно обрабатывать голосовой пакет больше 20 мс. Механизм не изменяет занимаемую полосу канала. Уменьшает возможную задержку пакета и вариацию задержки (jitter) потока.

Механизм LFI имеет следующие характеристики:

  • пакеты, исходящие из высокоприоритетных очередей, не фрагментируются;
  • механизм относится к процессам, работающим на канальном уровне (L2);
  • рекомендованный интервал фрагментации (serialization) — 10 мс, для канала в 512 Kbps соответствует пакету размером 640 байт;
  • существуют два варианта механизма — Multilink PPP LFI и Frame Relay LFI (FRF.12).

Неэффективно использовать данный механизм на каналах более 1 Mbps.

Ошибки проектирования IP-телефонии

Отличительные черты неправильного проектирования:

  • игнорирование требований QoS на втором уровне модели OSI: QoS на втором уровне включает в себя FRF.11, LFI и планирование трафика;
  • игнорирование других требований QoS: такие сервисы как LLQ и сRTP должны быть включены;
  • игнорирование анализа пропускной способности: планирование количества звонков и их влияние на пропускную способность является критичным для всех пользователей сети;
  • простое добавление VoIP в существующую IP-сеть: при внедрении VoIP может потребоваться перепроектирование сети.

Краткий обзор протоколов VoIP

В технологии VoIP используются следующие протоколы:

  • H.323. Протокол ITU для интерактивной конференции. Был изначально предназначен для мультимедийного взаимодействия в сетях без установления соединения, таких как ЛВС.
  • MGCP (Media Gateway Control Protocol). Предназначен для управления VoIP шлюзов, подключенных к внешним устройствам управления вызовами. MGCP предоставляет сервис сигналлинга для недорогих конечных устройств, таких как шлюзы, которые не поддерживают в полном объеме стек сигналлинга, например H.323.
  • SIP (Session Initiation Protocol). Протокол, определяющий команды и ответы для установления и завершения телефонных вызовов. Также детализирует такие моменты как безопасность, прокси и транспортные сервисы.
  • RTP (Real-Time Transport Protocol). RTP доставляет голос через сеть. Обеспечивает очередность и маркировку времени для правильной последовательной обработки пакетов.
  • RTCP (RTP ControlCtrl (сокращение от Control, произносится /kntrl/)— системная кнопка (клавиша) на компьютерной клавиатуре. Protocol). Используется для передачи управляющей информации для протокола RTP. Любое RTP-соединение имеет соответствующее RTCP-соединение. RTCP используется для предоставления информации о качестве сервиса.

Соответствие протоколов VoIP уровням модели OSI:

Application

Софтфоны и приложения Call Manager

Presentation

Кодеки

Session

H.323/SIP/MGCP

Transport

RTP/UDP (голос), TCP/UDP (управление)

Network

IP

Data-Link

Frame Relay, ATM, Ethernet, MLPPP, PPP, HDLC ...

Physical

Физическая среда передачи

Принципы установления соединения

Абонентские устройства (Dial Peers)

Абонентское устройство (Dial Peer) — это адресуемая точка дозвона. Такие точки устанавливают логические соединения, называемые этапами дозвона (Call Legs), для завершения установления звонка. Маршрутизаторы Cisco, поддерживающие голосовые функции, поддерживают два типа абонентских устройств: POTS Dial Peer и VoIP Dial Peer.

POTS (Plane old telephone service) Dial Peer подключаются к традиционным телефонным сетям или традиционным телефонным аппаратам. Такие устройства выполняют функции по предоставлению адреса (телефонного номера или диапазона телефонных номеров) для конечного устройства (сети) и также указывают на конкретный голосовой порт, к которому конечное устройство (сеть) подключено.

VoIP Dial Peer подключаются через сеть передачи данных и предоставляют адрес назначения (телефонный номер или диапазон номеров) для конечного устройства в сети и ассоциируют адрес назначения со следующим маршрутизатором, на который звонок должен передаться.

Когда происходит вызов, устройство генерирует цифры номера дозвона как способ указания устройства, на котором звонок должен завершиться, то есть устройства, на которое совершается звонок. Когда эти цифры попадают на голосовой порт маршрутизатора, маршрутизатор должен иметь способ решить, куда вызов должен быть маршрутизирован. Маршрутизатор находит это решение, просматривая списокСписок— письменный перечень, число, состав; документ, содержащий перечень каких-либо сведений; в переносном смысле— буквальное, точное воспроизведение, копия; рукописная копия древнего памятника письменности. абонентских устройств.

Адрес абонентского устройства, называемый шаблоном назначения (destination pattern), сконфигурирован на каждом абонентском устройстве. ШаблонШаблон в технике— пластина (лекало, трафарет ит.п.) с вырезами, по контуру которых изготовляются чертежи или изделия либо инструмент для измерения размеров. назначения может соответствовать как одному телефонному номеру, так и диапазону телефонных номеров. МаршрутизаторМаршрутизатор (проф. жарг. раутер, рутер (от англ.router /u:t()/ или /at/, /at/) или роутер (прочтение слова англ.router как транслитерированного))— сетевое устройство, пересылающее пакеты данных между различными сегментами сети и принимающее решения на основании информации о топологии сети и определённых правил, заданных администратором. использует абонентские устройства для установления логических соединений (Call Legs) как в исходящем, так и во входящем направлениях.

Когда к маршрутизатору Cisco Systems с голосовыми функциями подключается традиционное телефонное устройство (вариант POTS Dial Peer), в конфигурации маршрутизатора указывается телефонный номер этого устройства и порт, к которому оно подключено. Таким образом, маршрутизатор "знает", куда направлять входящий звонок на этот номер.

В случае VoIP Dial Peer конфигурация маршрутизатора включает телефонный номер назначения (диапазон номеров) и сетевой адрес следующего маршрутизатора.

Этапы соединения

Этапы установления соединения (Call Legs) — это логические соединения между любыми двумя телефонными устройствами, такими как шлюзы, маршрутизаторы, приложения Cisco CallManager или оконечные телефонные устройства.

Когда поступает входящий вызов, он обрабатывается отдельно, пока не будет определен пункт назначения. После этого устанавливается исходящее соединение, и входящий вызов коммутируется с исходящим портом.

Сквозной звонок состоит из четырех этапов соединения: два с точки зрения маршрутизатора, на котором звонок возникает, и два с точки зрения маршрутизатора, на котором телефонное соединение завершается.

Входящий этап соединения возникает, когда вызов входит в маршрутизатор или шлюз, исходящий — когда вызов совершается маршрутизатором или шлюзом.

Процесс установления телефонного соединения можно описать следующими шагами (Рис. 3):

Рис. 2. Этапы соединения

Рис. 3. Этапы соединения с точки зрения маршрутизаторов.

  1. Звонок с традиционного телефона приходит на R1 и абонентское устройствоУстройство(также прибор, жарг.девайс— от англ.device)— рукотворный объект со сложной внутренней структурой, созданный для выполнения определённых функций, обычно в области техники., инициировавшее вызов, идентифицировано.
  2. После ассоциирования входящего вызова с абонентским устройством R1 создает входящий этап соединения и назначает ему идентификатор Call ID (Call Leg 1).
  3. R1 использует строку набора с целью определения абонентского устройства для совершения исходящего шага соединения.
  4. После определения абонентского устройства, с которым будет устанавливаться соединение, R1 создает исходящий шаг соединения и назначает ему идентификатор (Call Leg 2).
  5. Сетевой запрос поступает на маршрутизатор 2 (R2), на котором происходит идентификация вызывающего сетевого абонентского устройства.
  6. После определения сетевого абонентского устройства, с которого поступил запрос, R2 создает входящее соединение и назначает ему идентификатор (Call Leg 3). Здесь R1 и R2 согласовывают параметры при необходимости.
  7. R2 использует строку набора с целью определения абонентского устройства для совершения исходящего шага соединения.
  8. После определения абонентского устройства R2 создает исходящий вызов с назначением ему идентификатора и завершает процесс соединения (Call Leg 4).

В качестве иллюстрации процесса в главе "Примеры конфигураций" приведен пример конфигурацииКонфигурация — характерное взаимное положение Солнца, планет, других небесных тел Солнечной системы на небесной сфере. абонентских устройств и описаны методы конфигурирования диапазонов телефонных номеров.

Назад Оглавление Вперёд

Мы рекомендуем еще посмотреть:

Учебный курс «Avaya IP Office»

Установка и администрирование Avaya IP Office

Расписание:
C 21 по 23 сентября 2009 г.
C 07 по 10 декабря 2009 г.
Продолжительность курса: 3 дня.

Стоимость курса: 31 350 рублей

Общие сведения:

Курс содержит обзор архитектуры Avaya IP Office, обзор решений в области телефонии, передачи данных, на базе оборудования IP Office, подробно рассматривается системаСистема (от др.-греч. — «сочетание»)— множество взаимосвязанных элементов, обособленное от среды и взаимодействующее с ней, как целое. речевой почты Voice Mail Pro. Теоретическая часть курса сопровождается практическими упражнениями по настройке IP Office, соединению нескольких IP Office между собой по различным каналам связи и использованию Voice Mail Pro.

Назначение курса:

Курс предназначен для администраторов и инсталляторов Avaya IP Office.

Уровень предварительной подготовки:

Умение работать с PC. Необходимы начальные знания основ телефонии, передачи данных. Специальных знаний по предмету курса не требуется.

В изучении курса помогут опыт и знания по администрированию любых телефонных станций.

Программа курса:

    Введение:
      Назначение и позиционирование
      Основные возможности
      Архитектура системыСистема (от др.-греч. — «сочетание»)— множество взаимосвязанных элементов, обособленное от среды и взаимодействующее с ней, как целое.
      Функциональные компоненты системы
      Вопросы лицензирования
    Аппаратные средства IP Office
    Общая концепция управления системой
    Средства мониторинга системы
    Приложения пользователя:
      Phone Manager Lite & Pro
      SoftConsole
    Конфигурирование IP Office:
      Общие настройки системы
      Объекты традиционной телефонии
      Система голосовой почты Voice Mail Lite
      Средства передачи данных:
        Система удаленного доступа RAS
        IP маршрутизация
        Передача данных через ISDN
        Передача VoIP через LAN, WAN
        FireWall
    Система сбора статистики SMDR
    Система речевой почты Voice Mail Pro:
      Основные принципы, компоненты и требования к оборудованию
      Построение простейшего голосового меню (Short Code Auto Attendant)
      Описание функциональных элементов, применяемых в Voice Mail Pro:
        Применение default start point
        Применение modules

Приобретаемые знания:

Слушатели приобретают знания о линейке продуктов Avaya под общим нименованием IP Office, получают теоретические и практические знания о конфигурировании IP Office, включая настройку системы, пользователей, групп, соединительных линий (ISDN, LAN, WAN), маршрутизации вызовов, средств передачи данных. Практические навыки по построению алгоритмов интерактивного речевого взаимодействия (IVR) на примере построения алгоритма автоответчика.

Рекомендуем прослушать дополнительно курс: «IP-реше

2009 IT и оборудование для бизнеса, S-NETWORKS. Информационные технологии и Информационное оборудование